If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2=82496
We move all terms to the left:
x^2-(82496)=0
a = 1; b = 0; c = -82496;
Δ = b2-4ac
Δ = 02-4·1·(-82496)
Δ = 329984
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{329984}=\sqrt{256*1289}=\sqrt{256}*\sqrt{1289}=16\sqrt{1289}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{1289}}{2*1}=\frac{0-16\sqrt{1289}}{2} =-\frac{16\sqrt{1289}}{2} =-8\sqrt{1289} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{1289}}{2*1}=\frac{0+16\sqrt{1289}}{2} =\frac{16\sqrt{1289}}{2} =8\sqrt{1289} $
| 7m-6=78 | | 35+2x=5x+-22 | | x+4=40-4 | | 2x+3x²=0 | | 40x=40x | | -2x-1=88-91 | | 5x+3=3×-7 | | 5(2x-3)=-8-6x | | 19+q=56 | | 80-8=9x | | -2|2x-2|=8 | | 2(3-h-6=-5h | | 9u+63=(u+7) | | 4t-9=37 | | 1/3*(1/5/x-7/1)=5/1 | | 36=18^3x | | -5/4=1/6x+3/12 | | 7(x+3)=(10x+3) | | 18x+92=291-11x | | x/14=8/20 | | 0.6(2x-3)-2.4(3-x)=0 | | x+29=-30 | | 22+2x=12 | | -4x=12-56 | | x*0.2=300 | | x-0.2=300 | | x*0.2=150 | | x-0.2=150 | | 4x+23=0 | | n^2+3n-90=0 | | 6x-2=5x+17 | | 3(2x+5)+4=7 |